Veill Cornel Vedicine

NEMA NU4 performance evaluation of the SynchroPET human arterial PET (ArterialPET) scanner for standalone blood input function

Nicolas A. Karakatsanis¹, Edward K. Fung¹, Mercy Akerele¹, Louiz Pollanz², Robert Gross², Yegor Sinelinkov², Tom Mariner², Marc Alessi², John Babich¹, Sadek A. Nehmeh¹ ¹Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY ²SynchroPET, Inc., Stony Brook, NY,

INTRODUCTION

> Dynamic PET measures the spatiotemporal distribution of radiotracers activity concentration in tissue and blood (arterial input function, AIF) enables quantification of radiotracer's kinetics beyond SUV [1]

> <u>Arterial blood sampling (ABS)</u>: gold-standard method to measure AIF \succ invasive, associated with high risk and complexity [2]

- Image-derived input function (IDIF): non-invasive clinically adoptable method to estimate AIF from large blood pool regions drawn on dynamic PET images [3]
 - Requires scanning patient in the scanner for long periods of time
 - > Limited access to large blood pools with short axial FOV scanners

AIM

Assess the NEMA performance of the SynchroPET, Inc. (Stony Brook, NY) human arterial PET scanner prototype (ArterialPET[™]) designed for standalone 4-dimensional (4D) imaging of the human wrist to enable noninvasive quantitative blood input function measurements.

MATERIALS & METHODS

<u>ArterialPET[™]</u> encompasses

- \geq 24 detector modules (1 block ring) with inner diameter of 9 cm.
- \succ Module: 4 (transaxial) x 8 (axial) LSO crystals (2.3125 x 2.3125 x 6 mm³)
- > List-mode acquisition of prompts and delayed randoms coincidences
- Sinogram matrix: 59 (radial) x 48 (angular) x 64 (planes) bins.
- > 3D PET normalization factors calculated with component-based method
 - \succ rod source continuously rotating around the circumference of the transaxial FOV. (Fig. 1)
- Pet Image Reconstruction:
 - ➤ analytic 3D (FBP)
 - ➤ statistical 3D OS-EM (4 subsets)
 - \geq 3D images: 59 x 59 x 15 voxels
 - ➤ 1.254 x 1.254 x 1.15625 mm \succ image FOV:
 - 74mm diameter,
 - ➢ 17.3 mm axial FOV length
 - supports open-source Software for Tomographic Image Reconstruction (STIR) [4]
- > NEMA NU 4-2008 standards:
 - Image Quality, Spatial Resolution, System Sensitivity

Figure 1. Geometry of ArterialPET and experimental set-up for acquisition of 3D normalization data

Spa Reso

Ra Tang Ax

Figure 2. Radial, tangential & axial spatial resolution, in FWHM and FWTM mm, averaged between 2 axial slices at different radial distances from the center of transaxial FOV

> Spill-over ratio: 0.11 for the cold water and 0.07 for air regions

Mea

[1]	Η
[2]	Μ
[3]	Ρ.
[4]	K

RESULTS

Spatial Resolution

Average of radial and tangential resolution

> 1.49 mm FWHM (2.72 mm FWTM) @ 5mm radial distance from center: > 2.78 mm FWHM (5.07 mm FWTM) @ 25 mm radial distance from center > Axial resolution

> 2.84mm FWHM (5.18mm FWTM) @ 5mm radial distance from center > 4.69mm FWHM (8.57mm FWTM). @ 25 mm radial distance from center

	FWHM & FWTM (mm) averaged between 2 slices: @ axial center & @ 1/4									
atial	axial FOV distance from center									
lution	0 mm		5mm		10mm		15mm		25mm	
	FWHM	FWTM	FWHM	FWTM	FWHM	FWTM	FWHM	FWTM	FWHM	FWTM
dial	1.493	2.727	1.539	2.810	1.188	2.170	3.021	5.518	3.386	6.184
ential	1.213	2.216	1.441	2.632	2.609	4.765	2.409	4.400	2.168	3.959
cial	2.861	5.225	2.838	5.182	2.135	3.898	4.519	8.253	4.694	8.57 2

Image Quality (uniform hot and cold cylinder compartment)

 \succ Non-uniformity: 18%

(center) compartments. Line profile across the cold cylinders vs. OS-EM iterations (right)

Uniform hot activity distribution

				Cold Region	Spill-over Ratio (SOR)	%STD of SOR
			cold hegion		765TD 01 50K	
n	IVIAX	IVIIN	%SID	Water-filled cylinder	0.110	21.072
2 8.604 2.234 17.975		17.975	Air-filled cold cylinder	0.070	19.293	
						l

REFERENCES

- . Zaidi and N. Karakatsanis, Br J Radiol, 91(1081), 2018.
- Bentourkia and H. Zaidi, PET Clin, 2(2), 2007.
- Zanotti-Fregonara, et al, J Cereb Blood Flow Metab, 31(10) 2011.
- . Thielemans et al., Phys Med Biol, 57(4) 2012

- **Cold cylinder spill-over ratio**

4mm

В

Colored line profiles across the center of the (B) 1mm and 2mm, (C) 3mm and 4mm, and (D) 5mm hot rods show enhanced peak-to-valley ratio with increasing OS-EM iterations (4 subsets)

Rod Diameter	1mm	2mm	3mm	4mm	5mm
%Recovery Coeff. (RC)	21.777	40.616	58.350	86.352	96.211
%Std.Dev. (STD) of RC	28.121	26.720	21.071	20.220	19.521

CONCLUSIONS

The NEMA NU4-2008 spatial resolution, image quality and sensitivity performance of the SynchroPET ArterialPET[™] prototype was evaluated.

ArterialPET can be employed to detect and quantify non-invasively radioactivity from human blood vessels in the wrist Sestimated vessel diameter in the order of 2-5 mm.